Jornada Basin LTER

Rainfall manipulation experiment at the Jornada LTER. Picture shows a rainout shelter and graduate student Lara Reichmann.

Key Research Findings:

Desertification is a global problem that reduces plant productivity, biodiversity, air and soil quality, and water availability. JRN scientists developed an integrated understanding of consequences of desertification in arid ecosystems, including loss of ecosystem services
JRN scientists have created tools and programs to make scientific results readily available to a variety of stakeholders, including land managers, scientists and teachers. Outputs include web-based access to scientific data, methods to monitor changes in soils and vegetation around the world, and training for K-12 students and teachers.
JRN scientists discovered that variability in ecosystem responses in both time and space is more characteristic of drylands than average conditions. New research approaches provide insights into old problems, including inconsistent responses through time, persistent and variable patterns in space, and emergent behavior across scales.

Overview: The overall goal of the Jornada Basin LTER (JRN) program is to quantify the key factors and processes that control ecosystem dynamics and biotic patterns in Chihuahuan Desert landscapes. These landscapes are representative of many arid and semiarid ecosystems of the world where dramatic changes in vegetation structure and ecosystem processes have occurred over the past several centuries. These changes in ecosystem state are often interpreted as “desertification”, the broad-scale conversion of perennial grasslands to dominance by xerophytic woody plants and the associated loss of soils and biological resources, including biodiversity. The JRN LTER has been investigating desertification processes since 1982. Significant advances in understanding the causes and consequences of desertification have been made at specific spatial scales and for certain environmental conditions.
Read more.

History: The Jornada Basin Long Term Ecological Research Program (JRN LTER) has been investigating desertification processes since 1982. Significant progress has been made in understanding the causes and consequences of desertification, although key questions remain unresolved, including (1) How do we integrate diverse observations about flora, fauna, soils, hydrology, climate, and human populations across spatial and temporal scales to improve our ability to understand current and historic patterns and dynamics? (2) How do processes interact across a range of scales and under different conditions to drive desertification dynamics and constrain the conservation of biological resources? (3) How can we use knowledge of desertification dynamics to more effectively promote the conservation of biological resources and the recovery of grasslands? This integration is the focus of current LTER studies.
Read more.

Research Topics: desertification; nonlinear dynamics; threshold behavior; cross-scale interactions; cascading events; ecosystem indicators and vegetation dynamics; geomorphology and wind; ecohydrology; animal interactions; factors affecting primary production; animal-induced soil disturbances; direct and indirect consumer effects; vertebrate and invertebrate population dynamics; grazing effects on ecosystem structure and function; biodiversity and ecosystem
Read more.

Feedback

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer